
Semantic Alignment Between
Natural Language and Programming Language

Haochen Li

HAOCHEN003@ntu.edu.sg

AI-assisted Coding Changes How We Write Code

2025/6/25 Haochen Li 2

A coding assistant needs to understand requirements expressed in natural
language and translate them into programming language.

Before

After

Overview of My Research

• One-to-One Mapping
– How can we align representations of natural language and programming language

better, given a dataset that consists of NL-code pairs?

• One-to-Many Mapping
– In fact, an NL description often corresponds to multiple code implementations.

Considering this, how can we further enhance semantic alignment?

• Many-to-Many Mapping
– Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high-

quality synthetic data by leveraging this relationship?

2025/6/25 Haochen Li 3

Representation Alignment

2025/6/25 Haochen Li 4

(,)Sort a given matrix in ascending
order according to the sum of its rows.

def sort_matrix(M):
 result = sorted(M, key=sum)
 return result

> (,)Sort a given matrix in ascending
order according to the sum of its rows.

def square_perimeter(a):
perimeter=4*a
return perimeter

Objective:

Similarity of a positive pair

Similarity of any negative pairs

Optimization with Contrastive Learning

2025/6/25 Haochen Li 5

ℒ = −𝔼𝑖 log
exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑖)

exp 𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑖 + σ𝑗≠𝑖 exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑗)

Text Positive Code Negative Code

Numerator:
Pull together representations

Denominator:
Push away representations

Dominant choice: InfoNCE

Augment Positive Pairs

2025/6/25 Haochen Li 6

Raw-data level augmentation methods are resource-consuming
and limited in variety.

Augmented Code

Augmented Vector

Original Code

Original Vector

def func():
x = [1, 2, 3]
y = 0
for i in x:

y += i
return y

def func():
x = [1, 2, 3]
y = 0
while count < len(x):

y += x[count]
count += 1

return y

New Positive Pair

Can we directly augment this vector?

Representation-level Augmentation

2025/6/25 Haochen Li 7

ℎ+ = 𝛼⨀ℎ + 𝛽⨀ℎ′

Existing Work: Linear Interpolation

e.g. 0.8 × ℎ1 + 0.2 × ℎ2

Stochastic Perturbation

e.g. [ℎ10, ℎ11, ℎ12, ℎ13]--> [0, ℎ11, ℎ12, 0]

New Method: Linear Extrapolation

e.g. 1.2 × ℎ − 0.2 × ℎ′

Binary Interpolation
e.g. [ℎ10, ℎ11, ℎ12, ℎ13]--> [ℎ10, ℎ11

′ , ℎ12, ℎ13
′]

Gaussian Scaling
e.g. ℎ+ 𝛽⨀ℎ′ ∀𝛽~𝑁(0, 𝜎)

General Format:

Li, et al. "Exploring Representation-level Augmentation for Code Search." EMNLP 2022.

Theoretical Analysis

• Optimizing InfoNCE loss ℒ improves the lower bound of mutual
information 𝑰 for a positive pair:

𝐼 ≥ 𝑙𝑜𝑔 𝐵 − ℒ

2025/6/25 Haochen Li 8

• With augmentation, the lower bound is:

𝐼 ≥
1

𝛼2
(log 𝑁𝐵 − ℒ − (𝛽2 + 2𝛼𝛽) ∙ 𝐼−)

Moderate augmentation (𝛽 close to 0) leads to a tighter lower bound.

Mutual information indicates the similarity between two samples (the
higher, the better)

Experiment Results

2025/6/25 Haochen Li 9

Augmentation makes code
representations more evenly
distributed across the entire space.

w/o augmentation w/ augmentation

Easier to distinguish
representations.

Representation-level Augmentation also benefits Passage Retrieval

31

32

33

34

35

36

37

38

39

40

41

DistilBERT RoBERTa

M
R

R
@

10
00

Model

FiQA-2018

Original w/ Aug

2025/6/25 Haochen Li 10

31

34

37

40

43

46

49

52

DistilBERT RoBERTa

M
R

R
@

10
00

Model

NFCorpus

Original w/ Aug

Let’s turn our sight to the negative pair side

2025/6/25 Haochen Li 11

(,)Write a function of
quick sorting algorithm.

A function
of Quick
sorting

(,)Write a function of
quick sorting algorithm.

A function
of Bubble
sorting

(,)Write a function of
quick sorting algorithm.

A function
of file
I/O

Similarity

High

Low

We expect…

But this relative
relationship is not
modelled by InfoNCE
because it treats all
negative codes equally.

Positive

Negative

Negative

Negative pairs should not be treated equally

2025/6/25 Haochen Li 12

ℒ = −𝔼𝑖 log
exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑖)

σ𝑗 exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑗)
ℒ = −𝔼𝑖 log

exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑖)

σ𝑗 𝜆𝑖𝑗exp(𝑡𝑒𝑥𝑡𝑖 ∙ 𝑐𝑜𝑑𝑒𝑗)

How could we estimate 𝜆𝑖𝑗? BM25, SimCSE, Fine-tuned Code Search Models…

Soft-InfoNCE

Li, et al. “Rethinking Negative Pairs in Code Search." EMNLP 2023.

Soft-InfoNCE controls the distribution of negative samples

2025/6/25 Haochen Li 13

• Theorem 1 For a batch of texts 𝑡𝑖 𝑖=1
𝑁 , codes 𝑐𝑖 𝑖=1

𝑁 , and similarity scores 𝑆𝑖𝑗 (𝑆𝑖𝑗 ∝ 𝜆𝑖𝑗), we

have:

ℒ𝑢𝑛𝑖𝑓 ≥
1

𝑁 𝑁 − 2
෍

𝑖=1

𝑁

෍

𝑗≠𝑖

𝑁

log 𝑃𝜃 𝑐𝑗 𝑡𝑖 + 𝐾𝐿 𝑆𝑖𝑗 𝑃𝜃 𝑐𝑗 𝑡𝑖 + 𝑐𝑜𝑛𝑠𝑡.

Where 𝑁 is the batch size, 𝑃𝜃 𝑐𝑗 𝑡𝑖 is predicted similarity between text 𝑡𝑖 and code 𝑐𝑗 by model 𝜃.

While 𝐿𝑢𝑛𝑖𝑓 , it encourages 𝐾𝐿 𝑆𝑖𝑗 𝑃𝜃 𝑐𝑗 𝑡𝑖

the model predicted similarity 𝑃𝜃 𝑐𝑗 𝑡𝑖 gets closer to the given similarity.

2025/6/25 Haochen Li 14

ℒInfoNCE = −𝔼 log

𝑝 𝑐𝑖 𝑡𝑖

𝑝 𝑐𝑖

𝑝 𝑐𝑖 𝑡𝑖

𝑝 𝑐𝑖
+ σ𝑗≠𝑖

𝑁 𝑝 𝑐𝑗 𝑡𝑖

𝑝 𝑐𝑗

 = 𝔼 log 1 +
𝑝 𝑐𝑖

𝑝 𝑐𝑖 𝑡𝑖
෍

𝑗≠𝑖

𝑁
𝑝 𝑐𝑗 𝑡𝑖

𝑝 𝑐𝑗

 ≈ 𝔼 log 1 +
𝑝 𝑐𝑖

𝑝 𝑐𝑖 𝑡𝑖
𝑁 − 1 𝔼𝑐𝑗∈𝐶𝑛𝑒𝑔

𝑝 𝑐𝑗 𝑡𝑖

𝑝 𝑐𝑗

 ≥ 𝔼 log
𝑝 𝑐𝑖

𝑝 𝑐𝑖 𝑡𝑖
𝑁

= −𝐼 𝑡𝑖 , 𝑐𝑖 + log 𝑁

Monte Carlo estimation for mutual
information of all negative pairs 𝐶𝑛𝑒𝑔

based on the negative pairs in a batch

𝔼 log 1 +
𝑝 𝑐𝑖

𝑝 𝑐𝑖 𝑡𝑖
෍

𝑗≠𝑖

𝑁

𝜆𝑖𝑗

𝑝 𝑐𝑗 𝑡𝑖

𝑝 𝑐𝑗

By inserting 𝜆𝑖𝑗, it could be considered

as using importance sampling to
reduce estimation bias.

Soft-InfoNCE reduces bias in mutual information estimation

Soft-InfoNCE outperforms InfoNCE

2025/6/25 Haochen Li 15

Overview of My Research

• One-to-One Mapping
– How can we align representations of natural language and programming language

better, given a dataset that consists of NL-code pairs?

• One-to-Many Mapping
– In fact, an NL description often corresponds to multiple code implementations.

Considering this, how can we further enhance semantic alignment?

• Many-to-Many Mapping
– Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high-

quality synthetic data by leveraging this relationship?

2025/6/25 Haochen Li 16

Moving beyond One-to-One Mapping

2025/6/25 Haochen Li 17

(,)text_ 1 code_1

…

(,)text_ 2 code_2

(,)text_ n code_n

In the first part, we discuss how
to align representations better
given NL-code pairs that are
crawled from the Web (e.g.
GitHub).

code_11

code_12

code_1n

…

There are many semantic-equivalent
code variations. It is hard to collect all
variations.

Ignoring this one-to-many
relationship may not be optimal.

text_ 1

In the first part, we try to directly align natural language and programming
language.

Some works translate natural language to programming language before
calculating representation similarity.

2025/6/25 Haochen Li 18

Retrieve Retrieve

Vanilla Code Search Generation-Augmented Retrieval (GAR)

GAR sometimes fails for code search

2025/6/25 Haochen Li 19

Text:
Write a function to get the frequency of the
elements in a list.

True Code:
import collections
def freq_count(list1):
 freq_count = \

collections.Counter(list1)
 return freq_count

Exemplar Code:
def count_frequency(my_list):
 frequency = {}
 for element in my_list:
 if element not in frequency:
 frequency[element] = 0
 frequency[element] += 1
 return frequency

*Count the frequency automatically

*Count the frequency manually

LMs cannot recognize the similarity between
the exemplar code and the true code due to
their implementation style.

Li, et al. "Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search." ACL 2024.

Our Solution: rewrite the code (ReCo)

2025/6/25 Haochen Li 20

Text:
Write a function to get the frequency of the
elements in a list.

True Code:
import collections
def freq_count(list1):
 freq_count = \

collections.Counter(list1)
 return freq_count

Exemplar Code:
def count_frequency(my_list):
 frequency = {}
 for element in my_list:
 if element not in frequency:
 frequency[element] = 0
 frequency[element] += 1
 return frequency

*Count the frequency automatically

*Count the frequency manually Rewritten Code:
def frequency(my_list):
 freq = {}
 for i in my_list:
 if i in freq:
 freq[i] += 1
 else:
 freq[i] = 1
 return freq

Must use the same LLM!

2025/6/25 Haochen Li 21

Framework Overview

GAR

…

ReCo

…

Is the style mismatch problem in GAR a coincidence?

• Original code in the dataset is an implementation of the text in the dataset.
code~𝑃𝑟𝑒𝑎𝑙(· |text)

 𝑃𝑟𝑒𝑎𝑙 refers to the real-world distribution.

• Consider the exemplar code generation process as a sampling process (LLM
the sampler).

 exemplar code~𝑃𝐿𝐿𝑀(· |text)

 LLM also defines a probability distribution 𝑃𝐿𝐿𝑀.

Once there is a gap between 𝑃𝑟𝑒𝑎𝑙 and 𝑃𝐿𝐿𝑀, the style mismatch is inevitable.

2025/6/25 Haochen Li 22

Why ReCo works?

2025/6/25 Haochen Li 23

• Consider the exemplar code generation process as a sampling process (LLM
the sampler).

exemplar code~𝑃𝐿𝐿𝑀(· |text)

 LLM also defines a probability distribution 𝑃𝐿𝐿𝑀.

• We rewrite the code in the codebase through a code->summary->rewritten
code process.

rewritten code~𝑃𝐿𝐿𝑀(· |summary)

 If the summary is perfect (summary≈text):
rewritten code~𝑃𝐿𝐿𝑀(· |text)

Experiment results

2025/6/25 Haochen Li 24

GAR indeed improves code search,
but ReCo improves more.

(non-neural model, zero-shot, fine-
tune)

Experiment results

2025/6/25 Haochen Li 25

With ReCo, non-neural model BM25
is comparable to neural models
under the zero-shot setting.

Experiment results

2025/6/25 Haochen Li 26

With ReCo, neural models under the
zero-shot setting is comparable to
them after fine-tuning.

A new metric to measure code style similarity

• Code Style Similarity considers similarity of style from three perspectives:
– Variable Naming (based on Edit Distance)

– API Invocation (based on Edit Distance)

– Code Structure (based on Tree Edit Distance of Abstract Syntax Trees)

2025/6/25 Haochen Li 27

𝐸𝐷: Edit Distance
𝑇𝐸𝐷: Tree Edit Distance of Abstract Syntax Tree
𝜆𝑖: Normalized Inverse Document Frequency IDF
𝑆1, 𝑆2: Set of extracted variables or APIs

Our metric is better than existing metrics

2025/6/25 Haochen Li 28

Code Style Similarity CodeBLEU ROUGE-L BLEU

The improvement of Code Style Similarity has stronger correlation with
the performance improvement of ReCo over GAR.

Our metric is better than existing metrics

2025/6/25 Haochen Li 29

We select the best exemplar code (the most similar to
true code) under different metrics for BM25+ GAR.

The Code Style Similarity outperforms other settings.

def find_duplicate(nums):
 for i in range(len(nums)):
 if nums[i] in nums[i+1:]:
 return nums[i]
 return None

True Code Exemplar Code 1

def find_first_duplicate(nums):
 num_set = set()
 no_duplicate = -1
 for i in range(len(nums)):
 if nums[i] in num_set:
 return nums[i]
 else:
 num_set.add(nums[i])
 return no_duplicate

def find_duplicate(my_list):
 seen = set()
 for num in my_list:
 if num in seen:
 return num
 seen.add(num)
 return None

Exemplar Code 2

Overview of My Research

• One-to-One Mapping
– How can we align representations of natural language and programming language

better, given a dataset that consists of NL-code pairs?

• One-to-Many Mapping
– In fact, an NL description often corresponds to multiple code implementations.

Considering this, how can we further enhance semantic alignment?

• Many-to-Many Mapping
– Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high-

quality synthetic data by leveraging this relationship?

2025/6/25 Haochen Li 30

Iterative Rejection Fine-Tuning

2025/6/25 Haochen Li 31

…

Seed Inputs

Verify with unit test

(,) (,)

…

…

Data Synthesis

Fine-Tuning

Overview:

There is bias in data synthesis process

For each seed input, it is a specific expression of the intent behind the input.

Intent:

– I want a function for substring matching.

Possible inputs 1:

– Write a function to search a string for a regex pattern.

Possible input 2:

– Find a substring within a larger string that matches a given regular expression
pattern.

2025/6/25 Haochen Li 32

There is bias in data synthesis process

For each seed input, it is a specific expression of the intent behind the input.

For each intent, suppose all possible inputs and valid codes form a joint space.

2025/6/25 Haochen Li 33

If we synthesize codes solely based on
each seed input 𝑑0, it is drawing codes
from a conditional distribution (Red).

It is better to sample codes from the
marginal distribution (Blue).

Li, et al. “GiFT: Gibbs Fine-Tuning for Code Generation." ACL 2025.

Why is marginal distribution better?

• The loss ℒ𝑚𝑎𝑟𝑔 is implicitly estimated over all possible ℒ𝑐𝑜𝑛𝑑.

ℒ𝑚𝑎𝑟𝑔 = −𝔼𝑑~𝑃(𝑖𝑛𝑝𝑢𝑡) ℒ𝑐𝑜𝑛𝑑(𝑑)

• The variance (diversity) of code is higher.

𝑉𝑎𝑟 𝑐 = 𝔼𝑑[𝑉𝑎𝑟 𝑐 𝑑] + 𝑉𝑎𝑟(𝔼𝑑[𝑐|𝑑])

2025/6/25 Haochen Li 34

Expected variance (diversity) of codes
from conditional distribution

Variance of codes from different
inputs

How can we sample from marginal distribution?

• One possible solution is to ask LLMs to rewrite the seed input.

–The quality of rewritten inputs is not satisfiable.

–Rewritten inputs are still similar.

• We got inspiration from Gibbs Sampling, commonly used to approximate
joint distributions based on conditional distributions.

2025/6/25 Haochen Li 35

Pass rate (%) of self-generated codes
from the seed description, rewritten
description, and GiFT.

Introduction of Gibbs Sampling

Take a two-variable joint distribution as an example.

We want to sample from 𝑃(𝑥, 𝑦), but we only have access to 𝑃(𝑥|𝑦) and 𝑃(𝑦|𝑥).

Starting from 𝑥0

For 𝑡 =1 to 𝑁 do:

 𝑦𝑡~𝑃 𝑦 𝑥𝑡−1

 𝑥𝑡~𝑃 𝑥 𝑦𝑡

Collected pairs { 𝑥1, 𝑦1 𝑥2, 𝑦2 … (𝑥𝑁, 𝑦𝑁)} can be considered as being sampled
from the joint distribution.

2025/6/25 Haochen Li 36

Introduction of Gibbs Sampling

We want to sample from
𝑃(𝑥, 𝑦), but we only have
access to 𝑃(𝑥|𝑦) and 𝑃(𝑦|𝑥).

Starting from 𝑥0

For 𝑡 =1 to 𝑁 do:

 𝑦𝑡~𝑃 𝑦 𝑥𝑡−1

 𝑥𝑡~𝑃 𝑥 𝑦𝑡

2025/6/25 Haochen Li 37

In our contextGibbs sampling

We want to sample from 𝑃 text, code .
We have access to:
𝑃 text|code ---- Code Summarization
𝑃 code|text ---- Code Generation

Starting from the seed input text0

Collected pairs
{ text1, code1 … (textN, codeN)}

Curating codes for fine-tuning

2025/6/25 Haochen Li 38

Using all correct codes for fine-tuning:

1. Bias towards easier inputs

2. Bias towards head in long-tail distribution

Solutions:

1. At most K codes per inputs

2. Weighted random sampling based on
perplexity to encourage selecting tail
codesThe marginal distribution (Blue)

often does not follow a uniform
distribution.

Experiment results

2025/6/25 Haochen Li 39

RFT refers to Rejection-Fine-tuning, RFT+RD refers to RFT with rewritten texts

Impact of Perplexity-guided Data Selection

2025/6/25 Haochen Li 40

T > 0: Encourage Tail

T < 0: Encourage Head

Encouraging head speeds up
convergence, yet its potential is lower
than encouraging tail.

Perplexity distribution of self-
generated codes.

Encouraging head makes the
distribution sharper.

GiFT benefits not only self-training, but also distillation

2025/6/25 Haochen Li 41

Distill DeepSeek-Coder-6.7B to CodeLlama-7B

Prerequisites of applying GiFT to other tasks?

• LLMs could seamlessly translate between inputs and outputs.

– Counter example: Math Reasoning

– Translate solutions back to math problems?

• There is indeed a joint input-output space.

– Counter example: Factual Question Answering

2025/6/25 Haochen Li 42

Thank you!
Any Questions?

	Default Section
	幻灯片 1
	幻灯片 2: AI-assisted Coding Changes How We Write Code
	幻灯片 3: Overview of My Research
	幻灯片 4: Representation Alignment
	幻灯片 5: Optimization with Contrastive Learning
	幻灯片 6: Augment Positive Pairs
	幻灯片 7: Representation-level Augmentation
	幻灯片 8: Theoretical Analysis
	幻灯片 9: Experiment Results
	幻灯片 10: Representation-level Augmentation also benefits Passage Retrieval
	幻灯片 11: Let’s turn our sight to the negative pair side
	幻灯片 12: Negative pairs should not be treated equally
	幻灯片 13: Soft-InfoNCE controls the distribution of negative samples
	幻灯片 14: Soft-InfoNCE reduces bias in mutual information estimation
	幻灯片 15: Soft-InfoNCE outperforms InfoNCE
	幻灯片 16: Overview of My Research
	幻灯片 17: Moving beyond One-to-One Mapping
	幻灯片 18
	幻灯片 19: GAR sometimes fails for code search
	幻灯片 20: Our Solution: rewrite the code (ReCo)
	幻灯片 21: Framework Overview
	幻灯片 22: Is the style mismatch problem in GAR a coincidence?
	幻灯片 23: Why ReCo works?
	幻灯片 24: Experiment results
	幻灯片 25: Experiment results
	幻灯片 26: Experiment results
	幻灯片 27: A new metric to measure code style similarity
	幻灯片 28: Our metric is better than existing metrics
	幻灯片 29: Our metric is better than existing metrics
	幻灯片 30: Overview of My Research
	幻灯片 31: Iterative Rejection Fine-Tuning
	幻灯片 32: There is bias in data synthesis process
	幻灯片 33: There is bias in data synthesis process
	幻灯片 34: Why is marginal distribution better?
	幻灯片 35: How can we sample from marginal distribution?
	幻灯片 36: Introduction of Gibbs Sampling
	幻灯片 37: Introduction of Gibbs Sampling
	幻灯片 38: Curating codes for fine-tuning
	幻灯片 39: Experiment results
	幻灯片 40: Impact of Perplexity-guided Data Selection
	幻灯片 41: GiFT benefits not only self-training, but also distillation
	幻灯片 42: Prerequisites of applying GiFT to other tasks?
	幻灯片 43: Thank you! Any Questions?

