o] NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Semantic Alignment Between

Natural Language and Programming Language

Haochen Li
HAOCHENOO3@ntu.edu.sg

Al-assisted Coding Changes How We Write Code

Before & —_— _D_
r- [©]

After —S g — [

A coding assistant needs to understand requirements expressed in natural
language and translate them into programming language.

Overview of My Research

* One-to-One Mapping :
— How can we align representations of natural language and programming language |
better, given a dataset that consists of NL-code pairs? |

|

* One-to-Many Mapping
— In fact, an NL description often corresponds to multiple code implementations.
Considering this, how can we further enhance semantic alignment?

* Many-to-Many Mapping
— Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high-
quality synthetic data by leveraging this relationship?

Representation Alignment
Objective:

Similarity of a positive pair

result = sorted(M, key=sum)

return result

Sort a given matrix in ascending
order according to the sum of its rows.

def sort_matrix(M):)

> (Sort a given matrix in ascending def square_perimeter(a):)

.) ; L
order according to the sum of its rows. PElralnE 4 a
’ return perimeter

Similarity of any negative pairs

Optimization with Contrastive Learning

Dominant choice: InfoNCE

exp(text; - code;)
exp(text; - code;) +),

L =—-E; |l
(108 j=i €Xp(text; - code)

Numerator:

AN o Q/ Pull together representations
| o ™ ® Denominator:
Y Push away representations

A Text O Positive Code O Negative Code

Augment Positive Pairs

Raw-data level augmentation methods are resource-consuming
and limited in variety.

def func():
x = [1, 2, 3]
y =0
while count < len(x): () Augmented Vector
y += X[count]
count += 1 Augmented Code [—> — O00O
return y
U
t I I New Positive Pair
I
def func(): — I~ —_— .
‘0 s [onginalCode | 1{000)
y =9 [o
for i in x: J i Original Vector :
y += i T TT T s
return y

Can we directly augment this vector?

Representation-level Augmentation

Existing Work: Linear Interpolation N
e.g. 0.8 X hy +0.2 X h,

Stochastic Perturbation
e.g. R0, R11, N1z, N13]--> [0, hyq, Ry, 0] General Format:

Now Mothod: Linew Exreporation > h™ =a®h+ PO’

Linear Extrapolation
eg. 1.2xh—02xH

Binary Interpolation
e.g. [h19, h11, h12, Ri3]--> [0, hyq, R, R3]

Gaussian Scaling

e.g. h+ FOh' VL~N(0, o) J
Li, et al. "Exploring Representation-level Augmentation for Code Search." EMNLP 2022.

2025/6/25 Haochen Li

Theoretical Analysis

* Optimizing InfoNCE loss £ improves the lower bound of mutual

information I for a positive pair:
I >1log(B) — L

« With augmentation, the lower bound is:

I > %(log(NB) —L—(B%+2ap) 1)

Moderate augmentation (f close to 0) leads to a tighter lower bound.

Mutual information indicates the similarity between two samples (the
higher, the better)

Experiment Results

Model Ruby JavaScript Go Python Java PHP
Original w/ RA Original w/ RA Original w/ RA Original w/ RA Original w/ RA Original w/ RA
RoBERTa (code) 64.1 66.5 58.3 61.2 86.7 89.2 61.0 66.3 63.4 67.4 58.4 61.7
CodeBERT 64.8 66.4 594 60.8 87.8 89.0 63.6 65.4 66.3 67.4 61.5 61.9
GraphCodeBERT 70.5 72.1 64.7 67.1 89.6 90.3 69.0 70.8 69.1 70.8 64.8 65.6
w/o augmentation w/ augmentation
: . iy, g e
i 4 2 M Sl e I ,:,’, .
\ "’% C ot et ' w‘i*,, Augmentatlon makes code
* b * xx **** " .
: * I R P R representations more evenly
ol * ** ** iy **** . . .
. * A 0 %‘; PRI, :*‘j L distributed across the entire space.
‘ * * ** ** x w *:'k* :’ ﬁt:’*
- ‘i;; : S M e R
" * * **&:
T }' el Fe TR Easier to distinguish
* ~ ** ***‘* ¥ *** 1
-5 < M g‘*:*;* b 48 representations.

2025/6/25 Haochen Li

Representation-level Augmentation also benefits Passage Retrieval

41
40
39
38
S 37

® 36
s

00

1

3
32
31

W

2025/6/25

FiQA-2018

DistilBERT RoBERTa
Model

M Original W w/ Aug

MRR@1000

W
—_

Haochen Li

NFECorpus

DistilBERT RoBERTa
Model

M Original W w/Aug

10

Let’s turn our sight to the negative pair side

We expect...
Similarity
ngh Write a function of
quick sorting algorithm.
[
: Write a function of
| quick sorting algorithm.
|
: Write a function of
Low | quick sorting algorithm.

A function
of Quick
sorting

A function
of Bubble
sorting

A function
of file
I/0

) Positive

But this relative
relationship is not
modelled by InfoNCE
because it treats all
negative codes equally.

Negative pairs should not be treated equally

o Soft-InfoNCE
A Text O Positive Code O Negative Code

exp(text; - code;) exp(text; - code;)
L =—F:| - L= - |l
(1'°8 >, i exp(text; - code) ('8

2.j lijexp(text; - code;)

How could we estimate 4;;? BM25, SimCSE, Fine-tuned Code Search Models...

Li, et al. “Rethinking Negative Pairs in Code Search." EMNLP 2023.

Soft-InfoNCE controls the distribution of negative samples

» Theorem 1 For a batch of texts {t;}\-;, codes {¢;}}L;, and similarity scores {S;;} (S;; « 1;;), we
have:

N [N]
1
Lynif 2 NN — Z)Zl Z long(cj|tl-) + KL(Sij|P9(cj|ti)) + const.
1=

_j:ti

Where N is the batch size, Py(c;|t;) is predicted similarity between text ¢; and code ¢; by model 6.

While Ly,,,;¢ ™, it encourages KL (Sl-j |P9 (cj|ti)) N
the model predicted similarity Py(c;|t;) gets closer to the given similarity.

2025/6/25 Haochen Li 13

Soft-InfoNCE reduces bias in mutual information estimation

Linfonce = —Elog

Monte Carlo estimation for mutual

p(c;lt) information of all negative pairs Cy,

p(c;)

based on the negative pairs in a batch

p(ci|t;) N p(cjlti)
p(c;) +Zj¢i p(CJ) /
~ p(c) ~rlglt)
= Elog|1 p(cl|t)2 p(c)] - p(c) ~ p(ci|t;)
J IElog 1+ /1”
N p(c) o(ci|t:) plaltd o+ p(g)
~ IElog 1+ o(c |t)(N 1)IEC]ECn€g o(c)
> E log[e] By inserting /;, it could be considered

= —I(t;,c;) +logN

2025/6/25

as using importance sampling to
reduce estimation bias.

Soft-InfoNCE outperforms InfoNCE

Model Loss Estimator Ruby Python Java JavaScript PHP Go
InfoNCE - 64.8 63.6 66.3 59.4 61.5 87.8

CodeBERT BM25 66.0 664 68.2 60.0 62.1 88.2
Soft-InfoNCE Trained Model 68.2 67.5 68.2 61.5 63.1 89.8

SImCSE 66.6 668 67.0 60.7 62.3 88.7

InfoNCE - 70.5 69.0 69.1 64.7 64.8 89.6

GraphCodeBERT BM25 73.0 69.7 69.8 65.2 65.5 89.2
Soft-InfoNCE Trained Model 71.9 69.2 69.2 65.3 64.8 88.9

SImCSE 72.1 700 70.2 65.6 65.7 894

InfoNCE - 740 720 726 68.4 67.6 91.5

UniXCoder BM25 753 728 733 69.3 68.4 91.6
Soft-InfoNCE Trained Model 75.3 728 73.1 69.4 68.2 91.5

SimCSE 75.3 726 73.1 69.9 684 913

2025/6/25

Overview of My Research

* One-to-One Mapping
— How can we align representations of natural language and programming language
better, given a dataset that consists of NL-code pairs?

: |
* One-to-Many Mapping |
— In fact, an NL description often corresponds to multiple code implementations. |
Considering this, how can we further enhance semantic alignment? :

* Many-to-Many Mapping
— Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high-
quality synthetic data by leveraging this relationship?

Moving beyond One-to-One Mapping

B (text. 1 | code_1) - text_ 1 code_11
..' (text._ 2 code_2) code_12
—
-—
- (text. n code n) otz
There are many semantic-equivalent
In the first part, we discuss how code variations. It is hard to collect all
to align representations better variations.
given NL-code pairs that are
crawled from the Web (e.g. Ignoring this one-to-many
GitHub). relationship may not be optimal.

In the first part, we try to directly align natural language and programming
language.

Some works translate natural language to programming language before
calculating representation similarity.

N\, Retrieve «El» Retrleve ~——
- »
| — U

Vanilla Code Search Generation-Augmented Retrieval (GAR)

GAR sometimes fails for code search

Text:
Write a function to get the frequency of the
elements in a list.

G ¥

*Count the frequency manually

-
Exemplar Code:

def count frequency(my list):
frequency = {}
for element in my list:
if element not in frequency:
frequency[element] = ©
frequency[element] += 1
return frequency

-

~

J

X

*Count the frequency automatically

p
True Code:
import collections
def freq_count(listl):
freq_count = \
collections.Counter(listl)
return freq_count

LMs cannot recognize the similarity between
the exemplar code and the true code due to
their implementation style.

Li, et al. "Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search." ACL 2024.

Our Solution: rewrite the code (ReCo)

Text:

Write a function to get the frequency of the
elements in a list.

SR

*Count the frequency manually

Exemplar Code:
def count frequency(my list):
frequency = {}
for element in my list:
if element not in frequency:
frequency[element] = ©
frequency[element] += 1
return frequency

*Count the frequency automatically

-~

True Code:

import collections
def freq_count(listl):
freq_count = \
collections.Counter(listl)
return freq_count

J

@ ‘ Must use the same LLM!

_

Rewritten Code:

def frequency(my_list):
freq = {}
for 1 in my_ list:
if 1 in freq:
freq[i] += 1
else:
freq[i] = 1
return freq

~

Framework Overview

R o

GAR @‘ (1) — OO0

el

2025/6/25

Is the style mismatch problem in GAR a coincidence?

* Original code in the dataset is an implementation of the text in the dataset.
code~P, o4 (- |text)

P, .q; refers to the real-world distribution.

* Consider the exemplar code generation process as a sampling process (LLM
the sampler).

exemplar code~P;; (- |text)
LLM also defines a probability distribution P; .

Once there is a gap between P,..,; and P,), the style mismatch is inevitable.

Why ReCo works?

* Consider the exemplar code generation process as a sampling process (LLM
the sampler).

exemplar code~P; (- [text)
LLM also defines a probability distribution P;; ;.

* We rewrite the code in the codebase through a code->summary->rewritten
code process.
rewritten code~P;; (- |[summary)

If the summary is perfect (summary=text):
rewritten code~P; (- [text)

Experiment results

CoNalLa MBPP APPS MBJP CoNalLa MBPP APPS MBJP

Unsupervised Supervised
BM25 52.6 12.6 11.6 11.3 CodeBERT 83.6 79.6 25.1 79.6

+GAR 717 351 176 335 +GAR 886 877 _293_ _ 84l

+ ReCo 758,41 | 70.8+35_7| 22.6.50 | 65.3.31% | + ReCo 85.0_36 92.3.456 | 51.2.919 | 89.1.50
UniXcoder 772 693 83 732 UniXcoder 84.8 81.2 243 81.6

+ GAR 839 85.0 132 80.0 + GAR 859 89.0 345 __ _ 856

+ ReCo 85-1+1.2 92-4+7_4 I 28'8+15.6 I 87.64_7-6 + ReCo 87.1_|_1_2 94.2+5_2 I_SS._1_|£5_I 90.5+4_g
Contriever 55.7 55.3 9.6 37.0

+ GAR 75.0 13 _ __ 140__ 623 __

+ ReCo 77.9:09 | 874161 1] 41.6. 976] 76.6,145!

——————— ——=== GARindeed improves code search,
CodeT5+ 73.7 59.4 7.6 67.7)
L GAR 803 717 _ 102 _ 797 but ReCo improves more. |
+ ReCo 80.8.05 | 89.4.1171]29.9, 197 | 84.0,,¢ (non-neural model, zero-shot, fine-
_______ — tune)

2025/6/25 Haochen Li 24

Experiment results

CoNalLa MBPP APPS MBIJP CoNaLa MBPP APPS MBIJP
Unsupervised Supervised
BM25 52.6 12.6 11.6 11.3 CodeBERT 83.6 79.6 25.1 79.6
__ +GAR 717 351 176 335 + GAR 88.6 87.7 29.3 84.1
| + ReCo 758,41 70.8:357 22.6,50 65.3:313| + ReCo 85.0_36 923.46 S51.2.019 89.1.5p
I_UgiX_co@r_ 772 693 83 732 _I UniXcoder 84.8 81.2 24.3 81.6
+ GAR 8309 85.0 13.2 80.0 + GAR 8509 89.0 34.5 85.6
+ ReCo 851,12 924,74 288,156 87.6,754 + ReCo 871,12 942,52 581,936 905,49
e |
| Contriever 55.7 55.3 9.6 37.0

— — — — — —J
+ GAR ™ 750 713 140 623
+ ReCo 77.9+2,9 87.4+16_1 41.6+27_6 76.6+14,3

—_————————~ With ReCo, non-neural model BM25
| CodeT5+ 73.7 59.4 7.6 67.7

— = GAR— ®0F — —777—— 00— — 97 —1 1s comparable to neural models
+ ReCo 808,05 894,117 299,197 84.0,45 under the zero-shot setting.

2025/6/25 Haochen Li

Experiment results

CoNalLa MBPP APPS MBIJP CoNalLa MBPP APPS MBIJP
Unsupervised _Supervised . __ . o .
BM25 52.6 12.6 11.6 11.3 | CodeBERT 83.6 79.6 25.1 79.6]
+ GAR 717 35.1 17.6 33.5 ~— ¥ GAR ~ 88.6 = 877 ~ 293 841
+ ReCo 758.:41 70.8.357 22.6.50 653,313 + ReCo 85.0_36 923.46 S51.2.019 89.1.5p
UniXcoder 77.2 69.3 8.3 73.2 | UniXcoder 84.8 81.2 24.3 81.6]
__ +GAR 839 850 132 8.0 ~ +GAR 89 = 8.0 = 345 "~ 86
| + ReCo 851.,o 924.7, 288,156 87.6476 | + ReCo 871,12 942,52 581,936 905,49
Contriever 55.7 55.3 9.6 37.0
+ GAR 750 71.3 14.0 62.3
+ ReCo 77.94_2.9 87-4+16.1 41-6+27_6 76.64_14.3 .
With ReCo, neural models under the
CodeT5+ 73.7 594 7.6 67.7 . .

+ ReCo 80.8.05 89.4.,,7 299.,97 84.0 45 them after fine-tuning.

2025/6/25 Haochen Li 26

A new metric to measure code style similarity

* Code Style Similarity considers similarity of style from three perspectives:
— Variable Naming (based on Edit Distance)
— API Invocation (based on Edit Distance)
— Code Structure (based on Tree Edit Distance of Abstract Syntax Trees)

1
CSSim(cq,c2) = 1— g(DiSVar—I-DiSAPI—I-TED)

.%/

1
A min ED(v;,v;)+

1
Dis = —
2(||)\||1 oper v; €S2

V€S

ED: Edit Distance

TED: Tree Edit Distance of Abstract Syntax Tree
A;: Normalized Inverse Document Frequency (IDF)
S1,S,: Set of extracted variables or APIs

Our metric is better than existing metrics

Code Style Similarity CodeBLEU ROUGE-L BLEU

- 40 =
SRR) AMARIS) AMAR{%: AMRR{3E]
[] L] -
g 304 L 303 304]
20 204 : 204
104 104 4 1014
. L 'y \ - L
' ! 8 ! ' ' ! ' ' rA ' ! | ! ' ! ——— ' ! " | ! &
o 0 /b0 002 004 006 —0l15 -oin -oos oo 5 0.10 015 —0l20 -015 —010 —oos oo 010 015 0.0 —al ho 05 0.10
- AMetric Score - AMetric Score - AMetric Score - AMetric Score
— 14
- (1 . -
ol L 1] L]
_2{”1 -
L] L]
=3 4
— i

The improvement of Code Style Similarity has stronger correlation with
the performance improvement of ReCo over GAR.

2025/6/25 Haochen Li 28

Our metric is better than existing metrics

w/ the best exemplar code

Dataset Random ..
CSSim CodeBLEU ROUGE.L BLEU We select the best exemplar code (the most similar to
CoNala 413 ny 39.6 115 123 true code) under different metrics for BM25+ GAR.
MBPP 24.0 26.8 25.1 23.7 24.0
APPS 14.1 15.2 14.8 14.2 14.2 The Code Style Similarity outperforms other settings.
MBJP 26.6 29.9 29.1 27.2 28.8
True Code Exemplar Code 1

Exemplar Code 2

num_set = set()
no_duplicate = -1
for 1 in range(len(nums)):
if nums[i] in num_set:
return nums[i]
else:

return no_duplicate

def find first duplicate(nums):

num_set.add(nums[i])

def find duplicate(nums):
for i in range(len(nums)):

return nums[i]

return None \9
\
“?m%@”e’&

Lone’

if nums[i] in nums[i+1:]:

" o (\05

def find duplicate(my list):
seen = set()
for num in my_list:
if num in seen:
return num
seen.add(num)
return None

Overview of My Research

* One-to-One Mapping
— How can we align representations of natural language and programming language
better, given a dataset that consists of NL-code pairs?

* One-to-Many Mapping
— In fact, an NL description often corresponds to multiple code implementations.
Considering this, how can we further enhance semantic alignment?

* Many-to-Many Mapping |
— Similarly, a code snippet corresponds to multiple NL descriptions. Can we create high- |
quality synthetic data by leveraging this relationship?

Iterative Rejection Fine-Tuning

Seed Inputs

Data Synthesis —)
| |

- &
=

Fine-Tuning ‘ Verify with unit test

(,)(,)

Overview:

There is bias in data synthesis process

For each seed input, it is a specific expression of the intent behind the input.

Intent:
— I want a function for substring matching.

Possible inputs 1:
— Write a function to search a string for a regex pattern.

Possible input 2:

— Find a substring within a larger string that matches a given regular expression
pattern.

There is bias in data synthesis process

For each seed input, it is a specific expression of the intent behind the input.

For each intent, suppose all possible inputs and valid codes form a joint space.

=~ |P(C)

a7 .Wx\““ ! T

\n

If we synthesize codes solely based on
each seed input d,, it is drawing codes

Ml from a conditional distribution (Red).

It is better to sample codes from the
marginal distribution (Blue).

Li, et al. “GiFT: Gibbs Fine-Tuning for Code Generation." ACL 2025.

2025/6/25 Haochen Li 33

Why is marginal distribution better?

* The loss L;,4r4 is implicitly estimated over all possible L y,4.

Lmarg = _IEd~P(input) Lecona(d)

 The variance (diversity) of code is higher.
Var(c) = E4[Var(c|d)] + Var(E4[c|d])

| \

Expected variance (diversity) of codes Variance of codes from different
from conditional distribution inputs

How can we sample from marginal distribution?

* One possible solution is to ask LLMs to rewrite the seed input.
—The quality of rewritten inputs is not satisfiable.
—Rewritten inputs are still similar.

RD

Datasets GiFT
Seed Rewritten Pass rate (%) of self-generated codes
APPS+ (Intro.) 17.79 4.8 >10.31 from the seed description, rewritten
APPS+ (Inter.) 3.22 0.38 >2.28 description, and GiFT.
MBPP+ 53.71 24.6 >24.07

Codelnsight 43.87 9.84 >24.18

* We got inspiration from Gibbs Sampling, commonly used to approximate
joint distributions based on conditional distributions.

Introduction of Gibbs Sampling

Take a two-variable joint distribution as an example.
We want to sample from P(x,y), but we only have access to P(x|y) and P(y|x).

Starting from x

For t =1 to N do:
Ve~P(ylxe—1)
xe~P(x|ye)

Collected pairs {(x1,y1)(x2,¥2) ... (xy, Yn)} can be considered as being sampled
from the joint distribution.

Introduction of Gibbs Sampling

Gibbs sampling

We want to sample from
P(x,y), but we only have
access to P(x|y) and P(y|x).

Starting from x

For t =1 to N do:
Ve~P(ylxe—1)
xe~P(x|ye)

I
|
I
I
|

I

In our context

We want to sample from P(text, code).
We have access to:

P (text|code) ---- Code Summarization
P(code|text) ---- Code Generation

Starting from the seed input text,

Collected pairs
{(texty, codey) ... (texty, codey)}

Curating codes for fine-tuning

Using all correct codes for fine-tuning:

== |P(c}

— pa=do 1. Bias towards easier inputs

2. Bias towards head in long-tail distribution

Solutions:
1. Atmost K codes per inputs
o Deserior 2. Weighted random sampling based on
on) & ping
perplexity to encourage selecting tail
The marginal distribution (Blue) codes

often does not follow a uniform
distribution.

2025/6/25 Haochen Li 38

Experiment results

DeepSeek-Coder-6.7B
()] N
e <

CodelLlama-7B
I
o

N
o

APPS+ (Introductory)

o0
o

[#)]
o

—»%— RFT
RFT+RD

_ GIiFT
1 2 3
_APPS+ (Introductory)

—»%— RFT
RFT+RD
GIFT

701

60"

50+

401

50+
401
30+
20+

APPS+ (Interview)

yd

/-
—%— RFT

/ RFT+RD
i GIFT

1 2 3
APPS+ (Interview)

7

—»— RFT
RFT+RD
GIFT

70+
681
661%

64

60
58
56
54

52+,

MBPP+

—%— RFT
RFT+RD
GIiFT

MBPP+

—%— RFT
RFT+RD
GiFT

741

721

701

70.01

67.51

65.01

62.51

Codelnsight

—%— RFT
RFT+RD
GIiFT

1 2 3
Codelnsight
3
—%— RFT
RFT+RD
GIFT
1 2 3

RFT refers to Rejection-Fine-tuning, REFT+RD refers to RFT with rewritten texts

2025/6/25

Haochen Li

39

Impact of Perplexity-guided Data Selection

. APPS+ (Introductory) MBPP+
M~ A .
S ¥ 50 /‘/’* T > 0: Encourage Tail
D 80
S _ T <0: Encourage Head
~ | .
g 70 Encouraging heac;l speeds up
a convergence, yet its potential is lower
60 - . .
= i B S . — than encouraging tail.
1 2 3 1 2 3
Iteration Iteration
APPS+ (Introductory) MBPP+
T=2 T=2 Perplexity distribution of self-
Q =-2) T='2
o o generated codes.
< =
))
Y Y
QL v .
= = Encouraging head makes the
distribution sharper.

T T L T T T ¥ T T L
1.0 1.5 2.0 2.5 3.0 .00 1.25 1.50 175 200 225 250

Perplexity@lteration 3 Perplexity@lteration 3

2025/6/25 Haochen Li 40

GiFT benefits not only self-training, but also distillation

2025/6/25

=
s

(o)
oo

CodelLlama-7B
[#)]
[=)]

=]
(9]

Distill DeepSeek-Coder-6.7B to CodeLlama-7B

-~
=]

h
N

Codelnsight MBPP+
62
h———%| 601 X
/ 58""/_,—/-/".-ﬁ
] == 56 —-
—— Distil-RFT —»— Distil-RFT
GiFT 54] GiFT
Distil-GiFT Distil-GiFT
1 ' 2 | 3 1 2 ' 3
Ilteration Iteration

Prerequisites of applying GiFT to other tasks?

* LLMs could seamlessly translate between inputs and outputs.
— Counter example: Math Reasoning
— Translate solutions back to math problems?

* There is indeed a joint input-output space.

— Counter example: Factual Question Answering

o] NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

Thank you!

Any Questions?

	Default Section
	幻灯片 1
	幻灯片 2: AI-assisted Coding Changes How We Write Code
	幻灯片 3: Overview of My Research
	幻灯片 4: Representation Alignment
	幻灯片 5: Optimization with Contrastive Learning
	幻灯片 6: Augment Positive Pairs
	幻灯片 7: Representation-level Augmentation
	幻灯片 8: Theoretical Analysis
	幻灯片 9: Experiment Results
	幻灯片 10: Representation-level Augmentation also benefits Passage Retrieval
	幻灯片 11: Let’s turn our sight to the negative pair side
	幻灯片 12: Negative pairs should not be treated equally
	幻灯片 13: Soft-InfoNCE controls the distribution of negative samples
	幻灯片 14: Soft-InfoNCE reduces bias in mutual information estimation
	幻灯片 15: Soft-InfoNCE outperforms InfoNCE
	幻灯片 16: Overview of My Research
	幻灯片 17: Moving beyond One-to-One Mapping
	幻灯片 18
	幻灯片 19: GAR sometimes fails for code search
	幻灯片 20: Our Solution: rewrite the code (ReCo)
	幻灯片 21: Framework Overview
	幻灯片 22: Is the style mismatch problem in GAR a coincidence?
	幻灯片 23: Why ReCo works?
	幻灯片 24: Experiment results
	幻灯片 25: Experiment results
	幻灯片 26: Experiment results
	幻灯片 27: A new metric to measure code style similarity
	幻灯片 28: Our metric is better than existing metrics
	幻灯片 29: Our metric is better than existing metrics
	幻灯片 30: Overview of My Research
	幻灯片 31: Iterative Rejection Fine-Tuning
	幻灯片 32: There is bias in data synthesis process
	幻灯片 33: There is bias in data synthesis process
	幻灯片 34: Why is marginal distribution better?
	幻灯片 35: How can we sample from marginal distribution?
	幻灯片 36: Introduction of Gibbs Sampling
	幻灯片 37: Introduction of Gibbs Sampling
	幻灯片 38: Curating codes for fine-tuning
	幻灯片 39: Experiment results
	幻灯片 40: Impact of Perplexity-guided Data Selection
	幻灯片 41: GiFT benefits not only self-training, but also distillation
	幻灯片 42: Prerequisites of applying GiFT to other tasks?
	幻灯片 43: Thank you! Any Questions?

